Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 19 2019 16:26:49
%S 1,0,3,16,115,660,5033,39936,362718,3624920,39916789,478953648,
%T 6227020787,87177645996,1307674338105,20922779566080,355687428095983,
%U 6402373519409856,121645100408831981,2432902004460734000,51090942171698415483,1124000727695858073380
%N Number of aperiodic permutations of {1..n}.
%C A permutation is defined to be aperiodic if every cyclic rotation of {1..n} acts on the cycle decomposition to produce a different digraph.
%H Andrew Howroyd, <a href="/A324514/b324514.txt">Table of n, a(n) for n = 1..200</a>
%H Gus Wiseman, <a href="/A324514/a324514.png">Cycle decompositions of the a(4) = 16 aperiodic permutations</a>.
%F a(n) = A306669(n) * n.
%F a(n) = Sum_{d|n} mu(n/d)*(n/d)^d*d!. - _Andrew Howroyd_, Aug 19 2019
%e The a(4) = 16 aperiodic permutations:
%e (1243) (1324) (1342) (1423)
%e (2134) (2314) (2413) (2431)
%e (3124) (3142) (3241) (3421)
%e (4132) (4213) (4231) (4312)
%t Table[Length[Select[Permutations[Range[n]],UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n,1,k+1]]&,#,n-1]&]],{n,6}]
%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ _Andrew Howroyd_, Aug 19 2019
%Y Cf. A000740, A000939, A027375, A061417, A079128, A086675, A192332, A323860, A323867, A323869.
%Y Cf. A306669, A324461, A324462, A324512, A324513, A324514.
%K nonn
%O 1,3
%A _Gus Wiseman_, Mar 04 2019
%E Terms a(10) and beyond from _Andrew Howroyd_, Aug 19 2019