login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of Product_{d|n} (d/tau(d)) where tau(k) = the number of divisors of k (A000005).
3

%I #16 Sep 08 2022 08:46:24

%S 1,1,3,4,5,9,7,8,9,25,11,6,13,49,225,128,17,81,19,250,441,121,23,36,

%T 125,169,243,686,29,50625,31,2048,1089,289,1225,216,37,361,1521,2500,

%U 41,194481,43,2662,10125,529,47,13824,343,15625,2601,4394,53,59049,3025

%N a(n) = numerator of Product_{d|n} (d/tau(d)) where tau(k) = the number of divisors of k (A000005).

%C Product_{d|n} (d/tau(d)) >= 1 for all n >= 1.

%H Robert Israel, <a href="/A324506/b324506.txt">Table of n, a(n) for n = 1..10000</a>

%F a(p) = p for p = odd primes.

%e Product_{d|n} (d/tau(d)) for n >= 1: 1, 1, 3/2, 4/3, 5/2, 9/4, 7/2, 8/3, 9/2, 25/4, 11/2, 6, 13/2, 49/4, 225/16, ...

%e For n=4; Product_{d|4} (d/tau(d)) = (1/tau(1)) * (2/tau(2)) * (4/tau(4)) = (1/1) * (2/2) * (4/3) = 4/3; a(4) = 4.

%p f:= proc(n) local d; numer(mul(d/numtheory:-tau(d), d=numtheory:-divisors(n))) end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jan 04 2021

%t Table[Numerator[Product[k/DivisorSigma[0, k], {k, Divisors[n]}]], {n, 1, 60}] (* _G. C. Greubel_, Mar 04 2019 *)

%o (Magma) [Numerator(&*[d / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]

%o (Sage) [product(k/sigma(k,0) for k in n.divisors()).numerator() for n in (1..60)] # _G. C. Greubel_, Mar 04 2019

%Y Cf. A000005, A324507 (denominators).

%K nonn,frac

%O 1,3

%A _Jaroslav Krizek_, Mar 03 2019