login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inflation orbit counts b^{(3)}_n for Danzer's F-type tiling and other 3D cut and project patterns with tau-inflation.
3

%I #19 Apr 30 2021 02:57:25

%S 1,0,63,124,1330,4032,24388,91000,438912,1770230,7880598,32763780,

%T 141420760,594798932,2537715150,10720674000,45537538410,192699485568,

%U 817138135548,3460078306440,14662949297724,62103832718202,263115950765038,1114512523173000,4721424167330750

%N Inflation orbit counts b^{(3)}_n for Danzer's F-type tiling and other 3D cut and project patterns with tau-inflation.

%H Seiichi Manyama, <a href="/A324488/b324488.txt">Table of n, a(n) for n = 1..1000</a>

%H M. Baake, J. Hermisson, and P. Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a>, J. Phys. A 30 (1997), no. 9, 3029-3056. See Tables 5 and 6.

%F a(n) = Sum_{d|n} mu(n/d) * A001350(d)^3 = Sum_{d|n} mu(n/d) * A324487(d). - _Seiichi Manyama_, Apr 29 2021

%o (PARI) a001350(n) = fibonacci(n+1)+fibonacci(n-1)-1-(-1)^n;

%o a(n) = sumdiv(n, d, moebius(n/d)*a001350(d)^3); \\ _Seiichi Manyama_, Apr 29 2021

%Y Cf. A001350, A031367, A324487, A324489.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Mar 12 2019

%E More terms from _Seiichi Manyama_, Apr 29 2021