login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{i=1..n, j=1..n, k=1..n} (i^2 + j^2 + k^2).
9

%I #16 Jan 06 2024 14:28:31

%S 1,3,5668704,550388591715704109656479285248,

%T 152455602303300418998634460043817052571893573096619261814850281699755319515987050496

%N a(n) = Product_{i=1..n, j=1..n, k=1..n} (i^2 + j^2 + k^2).

%C (a(n)^(1/n^3))/n^2 tends to 0.828859579669279... = A306617.

%p a:= n-> mul(mul(mul(i^2+j^2+k^2, i=1..n), j=1..n), k=1..n):

%p seq(a(n), n=0..5); # _Alois P. Heinz_, Jun 24 2023

%t Table[Product[i^2+j^2+k^2, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}]

%t Clear[a]; a[n_] := a[n] = If[n == 1, 3, a[n-1] * Product[k^2 + j^2 + n^2, {j, 1, n}, {k, 1, n}]^3 * (3*n^2) / (Product[k^2 + 2*n^2, {k, 1, n}]^3)]; Table[a[n], {n, 1, 6}] (* _Vaclav Kotesovec_, Mar 27 2019 *)

%Y Cf. A079478, A306594, A368722, A368723.

%Y Cf. A324403, A306617, A368622, A368623.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Feb 27 2019

%E a(0)=1 prepended by _Alois P. Heinz_, Jun 24 2023