login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of occurrences of 7 in the (signed) displacement sets of all permutations of [n+7] divided by 7!.
3

%I #7 Feb 24 2019 15:05:29

%S 0,1,15,193,2479,33081,464807,6906257,108589887,1805179321,

%T 31676392519,585609896433,11383428770303,232204651095353,

%U 4961029124266599,110811507291845521,2583228239189752447,62748345739947178617,1585780756628964990407,41635723030339339863281

%N Total number of occurrences of 7 in the (signed) displacement sets of all permutations of [n+7] divided by 7!.

%H Alois P. Heinz, <a href="/A324357/b324357.txt">Table of n, a(n) for n = 0..444</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%F E.g.f.: (1-exp(-x))/(1-x)^8.

%F a(n) = -1/7! * Sum_{j=1..n} (-1)^j * binomial(n,j) * (n+7-j)!.

%F a(n) = A306234(n+7,7).

%p a:= n-> (k-> -add((-1)^j*binomial(n, j)*(n+k-j)!, j=1..n)/k!)(7):

%p seq(a(n), n=0..23);

%Y Column k=7 of A324362.

%Y Cf. A306234.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Feb 23 2019