login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The modified Collatz map considered by Vaillant and Delarue.
4

%I #39 Aug 10 2023 13:13:05

%S 0,2,0,5,3,8,1,11,6,14,2,17,9,20,3,23,12,26,4,29,15,32,5,35,18,38,6,

%T 41,21,44,7,47,24,50,8,53,27,56,9,59,30,62,10,65,33,68,11,71,36,74,12,

%U 77,39,80,13,83,42,86,14,89,45,92,15,95,48,98,16,101,51,104,17,107,54,110,18,113,57,116,19,119,60

%N The modified Collatz map considered by Vaillant and Delarue.

%C This is a modified Collatz-Terras map (A060322), called in the Vaillant and Delarue link f.

%C The Collatz conjecture: iterations of the map f = a: N_0 -> N_0 with n -> a(n) lead always to 0.

%C The minimal number k with a^{[k]}(n) = 0 is given by A324037(n).

%C The tree CfTree, related to this map, giving the branches which lead to 0 for each vertex label of level n >= 0 is given in A324246.

%H Antti Karttunen, <a href="/A324245/b324245.txt">Table of n, a(n) for n = 0..20000</a>

%H Nicolas Vaillant and Philippe Delarue, <a href="https://web.archive.org/web/20220317020641/http://nini-software.fr/site/uploads/arithmetics/collatz/Intrinsic%203x+1%20V2.01.pdf">The hidden face of the 3x+1 problem. Part I: Intrinsic algorithm</a>, April 26 2019.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,0,0,0,-1).

%F a(n) = (3*n+1)/2 if n is odd, 3*n/4 if n == 0 (mod 4), and (n-2)/4 if n == 2 (mod 4).

%F a(n) = A349414(n) + n. - _Ruud H.G. van Tol_, Dec 08 2021

%F G.f.: x*(2 + 5*x^2 + 3*x^3 + 4*x^4 + x^5 + x^6)/(1 - x^4)^2. - _Stefano Spezia_, Dec 08 2021

%t a[n_]:=If[OddQ@n,(3n+1)/2,If[Mod[n,4]==0,3n/4,(n-2)/4]];Array[a,51,0] (* _Giorgos Kalogeropoulos_, Dec 08 2021 *)

%o (PARI) A324245(n) = if(n%2, (1+3*n)/2, if(!(n%4), 3*(n/4), (n-2)/4)); \\ (After Mathematica-code) - _Antti Karttunen_, Dec 09 2021

%Y Cf. A060322, A324037, A324246, A349414.

%K nonn,easy

%O 0,2

%A _Nicolas Vaillant_, Philippe Delarue, _Wolfdieter Lang_, May 09 2019

%E More terms from _Antti Karttunen_, Dec 09 2021