login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n minus the number of distinct values that A297167 obtains over the divisors > 1 of n: a(n) = A000005(n) - A324190(n).
7

%I #13 Feb 19 2019 18:20:20

%S 1,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,3,1,2,2,2,1,4,1,2,1,2,1,5,1,1,2,2,

%T 2,5,1,2,2,3,1,5,1,2,3,2,1,5,1,3,2,2,1,4,2,2,2,2,1,8,1,2,2,1,2,5,1,2,

%U 2,5,1,7,1,2,3,2,2,5,1,4,1,2,1,7,2,2,2,2,1,8,2,2,2,2,2,6,1,3,2,4,1,5,1,2,5

%N Number of divisors of n minus the number of distinct values that A297167 obtains over the divisors > 1 of n: a(n) = A000005(n) - A324190(n).

%C a(p^k) = 1 for all primes p and all exponents k >= 0, because with prime powers there are k divisors larger than 1 and A297167 obtains a distinct value for each one of them.

%H Antti Karttunen, <a href="/A324191/b324191.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = A000005(n) - A324190(n).

%o (PARI)

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));

%o A324190(n) = #Set(apply(A297167, select(d -> d>1,divisors(n))));

%o A324191(n) = (numdiv(n)-A324190(n));

%Y Cf. A000005, A001221, A001222, A046660, A061395, A297167, A324120, A324179, A324120, A324190, A324192.

%Y Cf. A000961 (positions of ones).

%K nonn

%O 1,6

%A _Antti Karttunen_, Feb 19 2019