login
a(n) = A001221(A156552(n)).
6

%I #7 Feb 23 2019 07:22:32

%S 0,1,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,2,2,1,1,2,2,2,2,1,2,1,1,2,2,2,

%T 1,1,1,3,2,1,1,1,1,2,2,1,1,2,1,3,1,1,1,2,1,3,2,1,1,1,2,2,2,2,2,1,2,2,

%U 1,1,2,1,2,2,2,2,2,1,1,3,2,1,2,3,3,3,2,1,2,2,2,3,3,3,2,1,1,3,2,1,2,1,1,3,1,1,1,1,1,3,2,1,2,3,2,2,2,2,2,2

%N a(n) = A001221(A156552(n)).

%H Antti Karttunen, <a href="/A324119/b324119.txt">Table of n, a(n) for n = 2..4473</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%o (PARI)

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));

%o A324119(n) = if(1==n,0,omega(A156552(n)));

%Y Cf. A001221, A156552.

%Y Cf. also A323243, A324104, A324105, A324117 (sigma, phi, tau and number of odd divisors (A001227) similarly permuted).

%Y Cf. also A322812.

%K nonn

%O 2,8

%A _Antti Karttunen_, Feb 21 2019