Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 01 2019 04:26:44
%S 0,1,2,5,4,2,6,0,1,18,10,3,16,4,12,67,12,4,18,30,36,260,22,16,8,8,44,
%T 5,20,1029,30,28,164,36,28,6,256,96,44,4102,36,7,66,16,104,16391,46,
%U 12,13,32,130,8,28,51,70,480,942,65544,42,9,2724,32,66,30,84,262153,124,508,40,10,4,1048586,3320,20,188,50,52,11,78,24
%N a(n) = A106315(A156552(n)).
%C Positions of zeros, which is sequence A005940(1+A001599(n)) sorted into ascending order: 2, 9, 125, 325, 351, 4199, ..., has A324201 as its subsequence.
%H Antti Karttunen, <a href="/A324051/b324051.txt">Table of n, a(n) for n = 2..4473</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = A106315(A156552(n)).
%F a(n) = (A156552(n)*A324105(n)) mod A323243(n).
%o (PARI)
%o A106315(n) = (n*numdiv(n) % sigma(n));
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
%o A324051(n) = A106315(A156552(n));
%Y Cf. A001599, A005940, A106315, A156552, A158879, A323243, A323244, A324049, A324105, A324201.
%Y Cf. also A324057, A324187.
%K nonn
%O 2,3
%A _Antti Karttunen_, Feb 19 2019