login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 5 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{5,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
2

%I #4 Feb 09 2019 19:51:56

%S 1,6,41,266,1247,4657,14795,41586,106067,249814,550334,1145148,

%T 2268140,4302757,7857830,13873160,23763590,39612078,64424311,

%U 102459670,159655885,244167521,367041525,543056454,791755709,1138709134,1617041716,2269272856,3149514786

%N Number of 5 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{5,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

%H Alois P. Heinz, <a href="/A323969/b323969.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: -(3*x^11 -29*x^10 +125*x^9 -314*x^8 +501*x^7 -517*x^6 +323*x^5 -84*x^4 -20*x^3 +30*x^2 -5*x+1) / (x-1)^11.

%Y Row (or column) 5 of array in A323846.

%K nonn,easy

%O 0,2

%A _Alois P. Heinz_, Feb 09 2019