login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.
9

%I #17 Jan 19 2023 12:23:14

%S 1,2,1,5,1,1,12,3,1,1,27,6,1,1,1,58,12,4,1,1,1,121,22,8,1,1,1,1,248,

%T 39,13,5,1,1,1,1,503,67,22,10,1,1,1,1,1,1014,113,36,16,6,1,1,1,1,1,

%U 2037,188,56,23,12,1,1,1,1,1,1,4084,310,86,35,19,7,1,1,1,1,1,1

%N Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.

%H Andrew Howroyd, <a href="/A323954/b323954.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)

%F T(n,k) = 1 - n + Sum_{i=1..floor(n/(k+1))} n*binomial(n-i*k-1, i-1)/i. - _Andrew Howroyd_, Jan 19 2023

%e Triangle begins:

%e 1

%e 2 1

%e 5 1 1

%e 12 3 1 1

%e 27 6 1 1 1

%e 58 12 4 1 1 1

%e 121 22 8 1 1 1 1

%e 248 39 13 5 1 1 1 1

%e 503 67 22 10 1 1 1 1 1

%e 1014 113 36 16 6 1 1 1 1 1

%e 2037 188 56 23 12 1 1 1 1 1 1

%e 4084 310 86 35 19 7 1 1 1 1 1 1

%e Row 4 counts the following partitions:

%e {{1234}} {{1234}} {{1234}} {{1234}}

%e {{1}{234}} {{12}{34}}

%e {{12}{34}} {{14}{23}}

%e {{123}{4}}

%e {{124}{3}}

%e {{134}{2}}

%e {{14}{23}}

%e {{1}{2}{34}}

%e {{1}{23}{4}}

%e {{12}{3}{4}}

%e {{14}{2}{3}}

%e {{1}{2}{3}{4}}

%t cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]];

%t spsu[_,{}]:={{}};spsu[foo_,set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,___}];

%t Table[Length[spsu[cycedsprop[n,k],Range[n]]],{n,12},{k,0,n-1}]

%o (PARI) T(n,k) = 1 - n + sum(i=1, n\(k+1), n*binomial(n-i*k-1, i-1)/i) \\ _Andrew Howroyd_, Jan 19 2023

%Y Column k = 0 is A000325. Column k = 1 is A066982. Column k = 2 is A323951. Column k = 3 is A306351.

%Y Cf. A001610, A001680, A005251, A323950, A323951, A323952, A323953.

%K nonn,tabl

%O 1,2

%A _Gus Wiseman_, Feb 10 2019