%I
%S 2,0,0,1,0,2,0,1,1,4,0,1,0,6,4,1,0,1,0,2,6,8,0,1,4,10,1,3,0,0,0,1,8,
%T 12,12,1,0,14,10,2,0,0,0,4,2,16,0,1,9,14,12,5,0,1,16,3,14,20,0,2,0,22,
%U 3,1,20,0,0,6,16,12,0,1,0,26,14,7,24,0,0,2,1,28,0,3,24,30,20,4,0,2,30,8,22,32,28,1,0,25,4,9,0,0,0,5,12
%N Sum of A126760 and its Dirichlet inverse.
%H Antti Karttunen, <a href="/A323882/b323882.txt">Table of n, a(n) for n = 1..20000</a>
%H Antti Karttunen, <a href="/A323882/a323882.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%F a(n) = A126760(n) + A323881(n).
%o (PARI)
%o up_to = 20000;
%o DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
%o v323881 = DirInverse(vector(up_to,n,A126760(n)));
%o A323881(n) = v323881[n];
%o A323882(n) = (A126760(n)+A323881(n));
%Y Cf. A126760, A323881, A323884, A323885, A323887.
%K nonn
%O 1,1
%A _Antti Karttunen_, Feb 08 2019
