login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of aperiodic binary toroidal necklaces of size n.
14

%I #8 Aug 22 2019 22:19:14

%S 1,2,2,4,8,12,36,36,114,166,396,372,1992,1260,4644,8728,20310,15420,

%T 87174,55188,314064,399432,762228,729444,5589620,4026522,10323180,

%U 19883920,57516048,37025580,286322136,138547332,805277760,1041203944,2021145660,3926827224

%N Number of aperiodic binary toroidal necklaces of size n.

%C We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

%H Andrew Howroyd, <a href="/A323865/b323865.txt">Table of n, a(n) for n = 0..200</a>

%H S. N. Ethier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">Counting toroidal binary arrays</a>, J. Int. Seq. 16 (2013) #13.4.7.

%F a(n) = Sum_{d|n} A323861(d, n/d) for n > 0. - _Andrew Howroyd_, Aug 21 2019

%e Inequivalent representatives of the a(6) = 36 aperiodic necklaces:

%e 000001 000011 000101 000111 001011 001101 001111 010111 011111

%e .

%e 000 000 001 001 001 001 001 011 011

%e 001 011 010 011 101 110 111 101 111

%e .

%e 00 00 00 00 00 01 01 01 01

%e 00 01 01 01 11 01 01 10 11

%e 01 01 10 11 01 10 11 11 11

%e .

%e 0 0 0 0 0 0 0 0 0

%e 0 0 0 0 0 0 0 1 1

%e 0 0 0 0 1 1 1 0 1

%e 0 0 1 1 0 1 1 1 1

%e 0 1 0 1 1 0 1 1 1

%e 1 1 1 1 1 1 1 1 1

%t apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];

%t neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];

%t zaz[n_]:=Join@@(Table[Partition[#,d],{d,Divisors[n]}]&/@Tuples[{0,1},n]);

%t Table[If[n==0,1,Length[Union[First/@matcyc/@Select[zaz[n],And[apermatQ[#],neckmatQ[#]]&]]]],{n,0,10}]

%Y Cf. A000031, A001037, A027375, A179043, A184271, A323351.

%Y Cf. A323858, A323859, A323860, A323861, A323864, A323871.

%K nonn

%O 0,2

%A _Gus Wiseman_, Feb 04 2019

%E Terms a(19) and beyond from _Andrew Howroyd_, Aug 21 2019