%I #10 Oct 06 2022 08:17:20
%S 1,0,1,12,1990,67098648,144115187673201808,
%T 1329227995784915871895000743748659792,
%U 226156424291633194186662080095093570015284114833799899656335137245499581360
%N Number of connected set-systems covering n vertices with no singletons.
%H G. C. Greubel, <a href="/A323817/b323817.txt">Table of n, a(n) for n = 0..11</a>
%F Logarithmic transform of A323816.
%e The a(3) = 12 set-systems:
%e {{1, 2, 3}}
%e {{1, 2}, {1, 3}}
%e {{1, 2}, {2, 3}}
%e {{1, 3}, {2, 3}}
%e {{1, 2}, {1, 2, 3}}
%e {{1, 3}, {1, 2, 3}}
%e {{2, 3}, {1, 2, 3}}
%e {{1, 2}, {1, 3}, {2, 3}}
%e {{1, 2}, {1, 3}, {1, 2, 3}}
%e {{1, 2}, {2, 3}, {1, 2, 3}}
%e {{1, 3}, {2, 3}, {1, 2, 3}}
%e {{1, 2}, {1, 3}, {2, 3},{1, 2, 3}}
%e The A323816(4) - a(4) = 3 disconnected set-systems covering n vertices with no singletons:
%e {{1, 2}, {3, 4}}
%e {{1, 3}, {2, 4}}
%e {{1, 4}, {2, 3}}
%p b:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
%p a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
%p k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
%p end:
%p seq(a(n), n=0..8); # _Alois P. Heinz_, Jan 30 2019
%t nn=10;
%t ser=Sum[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}]*x^n/n!,{n,0,nn}];
%t Table[SeriesCoefficient[1+Log[ser],{x,0,n}]*n!,{n,0,nn}]
%o (Magma)
%o m:=10;
%o A323816:= func< n | (&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]) >;
%o f:= func< x | 1 + Log((&+[A323816(j)*x^j/Factorial(j): j in [0..m+2]])) >;
%o R<x>:=PowerSeriesRing(Rationals(), m+1);
%o Coefficients(R!(Laplace( f(x) ))); // _G. C. Greubel_, Oct 05 2022
%o (SageMath)
%o m=10
%o def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
%o def A323817_list(prec):
%o P.<x> = PowerSeriesRing(QQ, prec)
%o return P( 1 + log(sum(A323816(j)*x^j/factorial(j) for j in range(m+2))) ).egf_to_ogf().list()
%o A323817_list(m) # _G. C. Greubel_, Oct 05 2022
%Y Cf. A001187, A016031, A048143, A092918, A293510, A317795, A323816 (not necessarily connected), A323818 (with singletons), A323819, A323820 (unlabeled case).
%K nonn
%O 0,4
%A _Gus Wiseman_, Jan 30 2019