login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the symmetrical of n via transport of structure from binary trees, where the binary tree of n is built as follows: create a root with value n and recursively apply the rule {write node's value as (2^c)*(2*k+1); if c>0, create a left child with value c; if k>0, create a right child with value k}.
3

%I #13 Jan 27 2019 17:56:44

%S 1,3,2,7,8,6,4,5,128,24,256,14,64,12,16,15,32,384,

%T 340282366920938463463374607431768211456,56,16777216,768,

%U 115792089237316195423570985008687907853269984665640564039457584007913129639936,10,16384,192,18446744073709551616,28,4096,48

%N a(n) is the symmetrical of n via transport of structure from binary trees, where the binary tree of n is built as follows: create a root with value n and recursively apply the rule {write node's value as (2^c)*(2*k+1); if c>0, create a left child with value c; if k>0, create a right child with value k}.

%C Let f denote the bijection that maps positive integers onto binary trees, defined in the name; let g be its inverse; let r denote the symmetry on binary trees (i.e., starting from the root, r recursively swaps left and right children). By definition a(n) = g(r(f(n))).

%C If instead of r, one uses s, the operation that swaps the left and right children of the root, without recursion, then one gets g(s(f(n))) = A117303(n).

%C Better leave a(39) = 2^340282366920938463463374607431768211456 not fully evaluated.

%H Alois P. Heinz, <a href="/A323710/b323710.txt">Table of n, a(n) for n = 1..38</a>

%F a(a(n)) = n.

%F a(n) = n iff n is in A323752.

%e 100 = (2^2)*(2*12+1) and recursively, 2 = (2^1), 12 = (2^2)*(2*1+1). We then have the following binary tree representation of 100:

%e 100

%e / \

%e 2 12

%e / / \

%e 1 2 1

%e /

%e 1

%e Erase the numerical values, just keep the tree structure:

%e o

%e / \

%e o o

%e / / \

%e o o o

%e /

%e o

%e Take its symmetrical:

%e o

%e / \

%e o o

%e / \ \

%e o o o

%e \

%e o

%e Compute back new numerical values from the leafs (value: 1) up:

%e (2*1+1) = 3; (2^1)*(2*3+1) = 14; (2^14)*(2*3+1) = 114688

%e 114688

%e / \

%e 14 3

%e / \ \

%e 1 3 1

%e \

%e 1

%e So, a(100) = 114688.

%p a:= proc(n) option remember; `if`(n=0, 0, (j->

%p (2*a(j)+1)*2^a((n/2^j-1)/2))(padic[ordp](n, 2)))

%p end:

%p seq(a(n), n=1..38); # _Alois P. Heinz_, Jan 24 2019

%t f[0]:=x

%t f[n_]:=Module[{c,k},c=IntegerExponent[n,2];k=(n/2^c-1)/2;o[f[c],f[k]]])

%t g[x]:=0

%t g[o[C_,K_]]:=(2^g[C])(2g[K]+1)

%t r[x]:=x

%t r[o[C_,K_]]:=o[r[K],r[C]]

%t a[n_]:=g@r@f[n]

%t Table[a[n], {n, 1, 30}]

%Y Cf. A117303 (variant where swap left/right is not recursively applied).

%Y Cf. A323665.

%Y Cf. A323752 (fixed points of this sequence).

%K nonn

%O 1,2

%A _Luc Rousseau_, Jan 24 2019