login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} 3^n * ((1+x)^n + i)^n / (4 + 3*i*(1+x)^n)^(n+1), where i^2 = -1.
2

%I #4 Feb 12 2019 22:42:14

%S 1,39,4914,1036674,306362988,116429448762,54085355493876,

%T 29694009536806140,18811303988392369116,13506257834309548172844,

%U 10838311025576842625186286,9612978973113439745046522234,9338259937723855837235460233514,9860260989532664468069402304530610,11244403367868838452318619557009699582,13772731580491669420660957058197302913122,18033025522536379279790808472409496887914884

%N G.f.: Sum_{n>=0} 3^n * ((1+x)^n + i)^n / (4 + 3*i*(1+x)^n)^(n+1), where i^2 = -1.

%C It is remarkable that the generating function results in a power series in x with only real coefficients.

%F G.f.: Sum_{n>=0} 3^n * ((1+x)^n + i)^n / (4 + 3*i*(1+x)^n)^(n+1).

%F G.f.: Sum_{n>=0} 3^n * ((1+x)^n - i)^n / (4 - 3*i*(1+x)^n)^(n+1).

%F G.f.: Sum_{n>=0} 3^n * ((1+x)^n + i)^n * (4 - 3*i*(1+x)^n)^(n+1) / (16 + 9*(1+x)^(2*n))^(n+1).

%F G.f.: Sum_{n>=0} 3^n * ((1+x)^n - i)^n * (4 + 3*i*(1+x)^n)^(n+1) / (16 + 9*(1+x)^(2*n))^(n+1).

%e G.f.: A(x) = 1 + 39*x + 4914*x^2 + 1036674*x^3 + 306362988*x^4 + 116429448762*x^5 + 54085355493876*x^6 + 29694009536806140*x^7 + 18811303988392369116*x^8 + ...

%e such that

%e A(x) = 1/(4+3*i) + 3*((1+x) + i)/(4 + 3*i*(1+x))^2 + 3^2*((1+x)^2 + i)^2/(4 + 3*i*(1+x)^2)^3 + 3^3*((1+x)^3 + i)^3/(4 + 3*i*(1+x)^3)^4 + 3^4*((1+x)^4 + i)^4/(4 + 3*i*(1+x)^4)^5 + 3^5*((1+x)^5 + i)^5/(4 + 3*i*(1+x)^5)^6 + 3^6*((1+x)^6 + i)^6/(4 + 3*i*(1+x)^6)^7 + ...

%e also

%e A(x) = 1/(4-3*i) + 3*((1+x) - i)/(4 - 3*i*(1+x))^2 + 3^2*((1+x)^2 - i)^2/(4 - 3*i*(1+x)^2)^3 + 3^3*((1+x)^3 - i)^3/(4 - 3*i*(1+x)^3)^4 + 3^4*((1+x)^4 - i)^4/(4 - 3*i*(1+x)^4)^5 + 3^5*((1+x)^5 - i)^5/(4 - 3*i*(1+x)^5)^6 + 3^6*((1+x)^6 - i)^6/(4 - 3*i*(1+x)^6)^7 + ...

%e RELATED INFINITE SERIES.

%e At x = -1/4, the g.f. as a power series in x diverges, but the related series converges:

%e S = Sum_{n>=0} 3^n * ((3/4)^n + i)^n / (4 + 3*i*(3/4)^n)^(n+1).

%e Equivalently,

%e S = Sum_{n>=0} 12^n * (3^n + 4^n*i)^n / (4^(n+1) + 3^(n+1)*i)^(n+1) ;

%e written explicitly,

%e S = 1/(4+3*i) + 12*(3+4*i)/(4^2+3^2*i)^2 + 12^2*(3^2+4^2*i)^2/(4^3+3^3*i)^3

%e + 12^3*(3^3+4^3*i)^3/(4^4+3^4*i)^4 + 12^4*(3^4+4^4*i)^4/(4^5+3^5*i)^5

%e + 12^5*(3^5+4^5*i)^5/(4^6+3^6*i)^6 + 12^6*(3^6+4^6*i)^6/(4^7+3^7*i)^7 + ...

%e which equals the real number

%e S = 0.33582962080420548450017336765358292462921076160047749762227134638...

%o (PARI) {a(n) = my(A = sum(m=0, n*60 + 600, 3^m*((1+x +x*O(x^n))^m + I)^m/(4 + 3*I*(1+x +x*O(x^n))^m)^(m+1)*1. )); round(polcoeff(A, n))}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(A = sum(m=0, n*60 + 600, 3^m*((1+x +x*O(x^n))^m - I)^m/(4 - 3*I*(1+x +x*O(x^n))^m)^(m+1)*1. )); round(polcoeff(A, n))}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A323570, A323571.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 12 2019