login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * ((1+x)^n + sqrt(5)*i)^n / (1 + sqrt(5)*i*x*(1+x)^n)^(n+1), where i^2 = -1.
5

%I #7 Feb 12 2019 16:08:42

%S 1,1,2,15,46,207,1201,6283,36746,235463,1553311,10803272,79101355,

%T 602629168,4775430042,39306129479,334963829368,2949993280119,

%U 26808687950425,250987986961396,2417350292179932,23922186855590303,242961589181754713,2529832992050854458,26980268905373556691,294452742973863998098,3285813227185410286520

%N G.f.: Sum_{n>=0} x^n * ((1+x)^n + sqrt(5)*i)^n / (1 + sqrt(5)*i*x*(1+x)^n)^(n+1), where i^2 = -1.

%C Note that the generating function expands into a power series in x with only real integer coefficients.

%H Paul D. Hanna, <a href="/A323685/b323685.txt">Table of n, a(n) for n = 0..300</a>

%F G.f.: Sum_{n>=0} x^n * ((1+x)^n + sqrt(5)*i)^n / (1 + sqrt(5)*i*x*(1+x)^n)^(n+1).

%F G.f.: Sum_{n>=0} x^n * ((1+x)^n - sqrt(5)*i)^n / (1 - sqrt(5)*i*x*(1+x)^n)^(n+1).

%e G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 46*x^4 + 207*x^5 + 1201*x^6 + 6283*x^7 + 36746*x^8 + 235463*x^9 + 1553311*x^10 + 10803272*x^11 + ...

%e Let r = sqrt(5)*i, so that r^2 = -5, then

%e A(x) = 1/(1 + r*x) + x*((1+x) + r)/(1 + r*x*(1+x))^2 + x^2*((1+x)^2 + r)^2/(1 + r*x*(1+x)^2)^3 + x^3*((1+x)^3 + r)^3/(1 + r*x*(1+x)^3)^4 + x^4*((1+x)^4 + r)^4/(1 + r*x*(1+x)^4)^5 + x^5*((1+x)^5 + r)^5/(1 + r*x*(1+x)^5)^6 + ...

%e also,

%e A(x) = 1/(1 - r*x) + x*((1+x) - r)/(1 - r*x*(1+x))^2 + x^2*((1+x)^2 - r)^2/(1 - r*x*(1+x)^2)^3 + x^3*((1+x)^3 - r)^3/(1 - r*x*(1+x)^3)^4 + x^4*((1+x)^4 - r)^4/(1 - r*x*(1+x)^4)^5 + x^5*((1+x)^5 - r)^5/(1 - r*x*(1+x)^5)^6 + ...

%o (PARI) {a(n) = my(r = sqrt(5)*I, A = sum(m=0,n+2, x^m*((1+x +x*O(x^n))^m + r)^m/(1 + r*x*(1+x +x*O(x^n))^m)^(m+1) )); round(polcoeff(A,n))}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n) = my(r = sqrt(5)*I, A = sum(m=0,n+2, x^m*((1+x +x*O(x^n))^m - r)^m/(1 - r*x*(1+x +x*O(x^n))^m)^(m+1) )); round(polcoeff(A,n))}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A323681, A323682, A323683, A323684.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 12 2019