Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 19 2019 03:50:34
%S 1,3,3,3,1,2,1,-1,4,-1,1,3,5,-1,2,-1,1,-1,1,1,4,-1,-1,-1,-1,5,-1,-1,1,
%T 4,-1,5,16,4,1,2,-1,3,1,14,-1,13,13,13,-1,12,1,-1,6,2,-1,-1,11,1,5,13,
%U -1,4,1,12,-1,-1,3,3,1,2,1,1,16,2,8,8,4,3,7,7,9,2,14
%N Number of (positive) iterations of f to reach an integer when starting from n/1. If no integer is ever reached then a(n) = -1. f(p/q) = (p + q) / (A000120(p) + A000120(q)).
%e 8/1 -> 9/2 -> 11/3 -> 14/5 -> 19/5 -> 24/5 -> 29/4 -> 33/5 -> 38/4=19/2 -> 21/4 -> 25/4 -> 29/4 and the 5-cycle repeats, so a(8) = -1.
%e 13/1 -> 14/4=7/2 -> 9/4 -> 13/3 -> 16/5 -> 21/3=7 so a(13) = 5.
%t Array[If[AnyTrue[#, IntegerQ], 1 + LengthWhile[#, ! IntegerQ@ # &], -1] &@ Rest@ NestWhileList[(#1 + #2)/(DigitCount[#1, 2, 1] + DigitCount[#2, 2, 1]) & @@ {Numerator@ #, Denominator@ #} &, #, UnsameQ, All] &, 79] (* _Michael De Vlieger_, Jan 18 2019 *)
%Y Cf. A000120, A058971, A059175, A323275, A323356, A323375.
%K sign
%O 1,2
%A _Ctibor O. Zizka_, Jan 18 2019