login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=1..n} (binomial(k-1,7) + binomial(n-k,7)).
6

%I #11 Jan 17 2019 09:22:06

%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,240248274716697412239360000,

%T 5659588189073370681080838881280000,

%U 148305406398618918682372310424354816000000,4049882681498254991937037064898924144230400000000,137651993399006086593846978063252515678682995490816000000

%N a(n) = Product_{k=1..n} (binomial(k-1,7) + binomial(n-k,7)).

%F a(n) ~ exp(-7*n + (n-7)*(1 + c*Pi)) * n^(7*n) / (7!)^n, where c = 8*cos((Pi + arctan(2769*sqrt(3)/239))/6) / sqrt(21) = 1.2446281707164555154936427017... is the root of the equation 823543*c^6 - 3764768*c^4 + 4302592*c^2 - 692224 = 0.

%t Table[Product[Binomial[k-1,7] + Binomial[n-k,7], {k, 1, n}], {n, 0, 20}]

%o (PARI) a(n) = prod(k=1, n, binomial(k-1, 7) + binomial(n-k, 7)); \\ _Daniel Suteu_, Jan 17 2019

%Y Cf. A000580, A323425, A323496, A323497, A323533, A323534.

%K nonn

%O 0,15

%A _Vaclav Kotesovec_, Jan 17 2019