The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323474 Array read by antidiagonals: Sprague-Grundy values G_G(n,k) (n>=1, k>=1) for Grossman's game. 1
 0, 1, 1, 2, 0, 2, 3, 0, 0, 3, 4, 1, 0, 1, 4, 5, 2, 0, 0, 2, 5, 6, 2, 1, 0, 1, 2, 6, 7, 3, 1, 0, 0, 1, 3, 7, 8, 3, 1, 0, 0, 0, 1, 3, 8, 9, 4, 2, 1, 0, 0, 1, 2, 4, 9, 10, 4, 2, 1, 0, 0, 0, 1, 2, 4, 10, 11, 5, 3, 1, 0, 0, 0, 0, 1, 3, 5, 11, 12, 5, 3, 2, 1, 0, 0, 0, 1, 2, 3, 5, 12, 13, 6, 3, 2, 1, 0, 0, 0, 0, 1, 2, 3, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Note this has offset 1 whereas A323473 has offset 0. LINKS Grant Cairns, Nhan Bao Ho, and Tamás Lengyel, The Sprague-Grundy function of the real game Euclid, Discrete Mathematics 311.6 (2011): 457-462. See Table 2. FORMULA G_G(n,k) = floor( |n/k - k/n| ). EXAMPLE Array begins: 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 0, 0, 1, 2, 2, 3, 3, 4, ... 2, 0, 0, 0, 1, 1, 1, 2, 2, ... 3, 1, 0, 0, 0, 0, 1, 1, 1, ... 4, 2, 1, 0, 0, 0, 0, 0, 1, ... 5, 2, 1, 0, 0, 0, 0, 0, 0, ... 6, 3, 1, 1, 0, 0, 0, 0, 0, ... 7, 3, 2, 1, 0, 0, 0, 0, 0, ... 8, 4, 2, 1, 1, 0, 0, 0, 0, ... ... CROSSREFS Cf. A323473. Sequence in context: A187881 A344839 A344836 * A132814 A058623 A209689 Adjacent sequences:  A323471 A323472 A323473 * A323475 A323476 A323477 KEYWORD nonn,tabl AUTHOR N. J. A. Sloane, Jan 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 14:24 EDT 2021. Contains 345417 sequences. (Running on oeis4.)