login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal number of steps to reach n from 1 using "Choix de Bruxelles", version 2 (cf. A323460), or -1 if n cannot be reached.
10

%I #29 Jan 09 2025 13:00:16

%S 0,1,11,2,-1,10,9,3,9,-1,10,9,5,8,-1,4,7,8,8,-1,10,9,6,8,-1,5,8,7,9,

%T -1,6,5,10,6,-1,9,9,7,9,-1,11,10,7,9,-1,6,9,8,10,-1,7,6,7,7,-1,6,7,8,

%U 8,-1,7,6,11,6,-1,10,10,7,10,-1,8,8,9,8,-1,8,11,8

%N Minimal number of steps to reach n from 1 using "Choix de Bruxelles", version 2 (cf. A323460), or -1 if n cannot be reached.

%C This is equally the minimal number of steps to reach n from 1 using "Choix de Bruxelles", version 1 (cf. A323286), or -1 if n cannot be reached.

%C n cannot be reached if its final digit is 0 or 5, but all other numbers can be reached (see comments in A323286).

%H Rémy Sigrist, <a href="/A323454/b323454.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444, Feb 2019; Fib. Quart. 57:3 (2019), 195-200.

%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy.

%H Brady Haran and N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=AeqK96UX3rA">The Brussels Choice</a>, Numberphile video (2020)

%H N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, <a href="https://vimeo.com/314786942">Part I</a>, <a href="https://vimeo.com/314790822">Part 2</a>, <a href="https://oeis.org/A320487/a320487.pdf">Slides.</a> (Mentions this sequence)

%e Examples of optimal ways to reach 1,2,3,...:

%e 1

%e 1, 2

%e 1, 2, 4, 8, 16, 112, 56, 28, 14, 12, 6, 3

%e 1, 2, 4

%e 5 cannot be reached, ends in 0 or 5

%e 1, 2, 4, 8, 16, 112, 56, 28, 14, 12, 6

%e 1, 2, 4, 8, 16, 112, 56, 28, 14, 7

%e 1, 2, 4, 8,

%e 1, 2, 4, 8, 16, 112, 56, 28, 18, 9.

%e 10 cannot be reached, ends in 0 or 5

%e 1, 2, 4, 8, 16, 112, 56, 28, 24, 22, 11

%e 1, 2, 4, 8, 16, 112, 56, 28, 14, 12

%e 1, 2, 4, 8, 16, 13

%e 1, 2, 4, 8, 16, 112, 56, 28, 14

%e 15 cannot be reached, ends in 0 or 5

%e 1, 2, 4, 8, 16

%e 1, 2, 4, 8, 16, 32, 34, 17

%e 1, 2, 4, 8, 16, 112, 56, 28, 18

%e 1, 2, 4, 8, 16, 32, 34, 38, 19

%e 20 cannot be reached, ends in 0 or 5

%e ...

%Y Cf. A323286-A323289, A323453, A323484, A323460.

%Y For variants of the Choix de Bruxelles operation, see A337321 and A337357.

%K sign,base,changed

%O 1,3

%A _N. J. A. Sloane_, Jan 15 2019

%E More terms from _Rémy Sigrist_, Jan 15 2019