login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest number that can be obtained by starting with 1 and applying "Choix de Bruxelles (version 2)" (see A323460) n times.
5

%I #31 Jan 09 2025 13:01:16

%S 1,2,4,8,16,112,224,512,4416,44112,88224,816448,8164416,81644112,

%T 811288224,8112816448,81128164416,811281644112,8112811288224,

%U 81128112816448,811281128164416,8112811281644112,81128112811288224,811281128112816448,8118112281128164416,81181122811281644112

%N Largest number that can be obtained by starting with 1 and applying "Choix de Bruxelles (version 2)" (see A323460) n times.

%C Also, largest number that can be obtained by starting with 1 and applying the original "Choix de Bruxelles" version 1 operation (as defined in A323286) at most n times.

%C a(n) is the largest number that can be obtained by applying Choix de Bruxelles (version 2) to all the numbers that can be reached from 1 by applying it n-1 times.

%C a(n+1) >= A323460(a(n)) (but equality does not always hold). See A307635. - _Rémy Sigrist_, Jan 15 2019

%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444, Feb 2019; Fib. Quart. 57:3 (2019), 195-200.

%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy.

%F a(n+4) = decimal concatenation of 8112 and a(n) for n >= 10.

%e After applying Choix de Bruxelles (version 2) 4 times to 1, we have the numbers {1,2,4,8,16}. Applying it a fifth time we get the additional numbers {13,26,32,112}, so a(5) = 112.

%Y Cf. A323286-A323289, A323460, A307635.

%K nonn,base,changed

%O 0,2

%A _N. J. A. Sloane_, Jan 15 2019

%E a(9)-a(16) from _Rémy Sigrist_, Jan 15 2019. Further terms from _N. J. A. Sloane_, May 01 2019