login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of plane partitions whose parts are the prime indices of n.
17

%I #4 Jan 15 2019 18:45:43

%S 1,1,1,1,2,1,2,1,3,2,2,1,3,1,2,2,5,1,4,1,3,2,2,1,5,2,2,3,3,1,4,1,7,2,

%T 2,2,8,1,2,2,5,1,4,1,3,3,2,1,7,2,4,2,3,1,7,2,5,2,2,1,8,1,2,3,11,2,4,1,

%U 3,2,4,1,12,1,2,4,3,2,4,1,7,5,2,1,8,2,2

%N Number of plane partitions whose parts are the prime indices of n.

%C Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%e The a(120) = 12 plane partitions:

%e 32111

%e .

%e 311 321 3111 3211

%e 21 11 2 1

%e .

%e 31 32 311 321

%e 21 11 2 1

%e 1 1 1 1

%e .

%e 31 32

%e 2 1

%e 1 1

%e 1 1

%e .

%e 3

%e 2

%e 1

%e 1

%e 1

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];

%t Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}]

%Y Cf. A000085, A000219, A003293, A056239, A112798, A114736, A117433, A138178, A296188, A299968.

%Y Cf. A323300, A323429, A323437, A323438, A323439.

%K nonn

%O 0,5

%A _Gus Wiseman_, Jan 15 2019