Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 06 2019 16:18:26
%S 0,1,2,1,0,4,1,2,4,3,1,1,0,6,10,1,2,4,6,5,12,1,1,1,0,5,3,8,1,2,4,3,10,
%T 4,16,18,1,1,4,2,0,12,16,18,11,1,2,2,6,10,12,16,9,11,28,1,2,4,6,10,0,
%U 16,3,22,28,5,1,1,2,3,10,6,4,3,22,14,30,36
%N Square array read by ascending antidiagonals: T(n,k) is the multiplicative order of the n-th prime modulo the k-th prime, or 0 if n = k, n >= 1, k >= 1.
%C The maximum element in the k-th column is prime(k) - 1. By Dirichlet's theorem on arithmetic progressions, all divisors of prime(k) - 1 occur infinitely many times in the n-th column.
%H Alois P. Heinz, <a href="/A323376/b323376.txt">Antidiagonals n = 1..200, flattened</a>
%F T(n,k) = A250211(prime(n), prime(k)).
%e Table begins
%e | k | 1 2 3 4 5 6 7 8 9 10 ...
%e n | p() | 2 3 5 7 11 13 17 19 23 29 ...
%e ---+-----+----------------------------------------
%e 1 | 2 | 0, 2, 4, 3, 10, 12, 8, 18, 11, 28, ...
%e 2 | 3 | 1, 0, 4, 6, 5, 3, 16, 18, 11, 28, ...
%e 3 | 5 | 1, 2, 0, 6, 5, 4, 16, 9, 22, 14, ...
%e 4 | 7 | 1, 1, 4, 0, 10, 12, 16, 3, 22, 7, ...
%e 5 | 11 | 1, 2, 1, 3, 0, 12, 16, 3, 22, 28, ...
%e 6 | 13 | 1, 1, 4, 2, 10, 0, 4, 18, 11, 14, ...
%e 7 | 17 | 1, 2, 4, 6, 10, 6, 0, 9, 22, 4, ...
%e 8 | 19 | 1, 1, 2, 6, 10, 12, 8, 0, 22, 28, ...
%e 9 | 23 | 1, 2, 4, 3, 1, 6, 16, 9 , 0, 7, ...
%e 10 | 29 | 1, 2, 2, 1, 10, 3, 16, 18, 11, 0, ...
%e ...
%p A:= (n, k)-> `if`(n=k, 0, (p-> numtheory[order](p(n), p(k)))(ithprime)):
%p seq(seq(A(1+d-k, k), k=1..d), d=1..14); # _Alois P. Heinz_, Feb 06 2019
%t T[n_, k_] := If[n == k, 0, MultiplicativeOrder[Prime[n], Prime[k]]];Table[T[n, k], {n, 1, 10}, {k, 1, 10}] (* _Peter Luschny_, Jan 20 2019 *)
%o (PARI) T(n,k) = if(n==k, 0, znorder(Mod(prime(n), prime(k))))
%Y Cf. A250211.
%Y Cf. A014664 (1st row), A062117 (2nd row), A211241 (3rd row), A211243 (4th row), A039701 (2nd column).
%Y Cf. A226367 (lower diagonal), A226295 (upper diagonal).
%K nonn,tabl
%O 1,3
%A _Jianing Song_, Jan 12 2019