login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of the sum of inverse products of cycle sizes in all permutations of [n].
5

%I #8 Feb 12 2024 05:56:40

%S 1,1,2,6,12,20,360,2520,1680,15120,151200,554400,9979200,129729600,

%T 605404800,27243216000,54486432000,308756448000,5557616064000,

%U 8122669632000,351982350720000,22174888095360000,25676186215680000,3740164458750720000,67322960257512960000

%N Denominator of the sum of inverse products of cycle sizes in all permutations of [n].

%H Alois P. Heinz, <a href="/A323291/b323291.txt">Table of n, a(n) for n = 0..505</a>

%F E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - _Vaclav Kotesovec_, Feb 12 2024

%p b:= proc(n) option remember; `if`(n=0, 1, add(

%p b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))

%p end:

%p a:= n-> denom(b(n)):

%p seq(a(n), n=0..25);

%t nmax = 30; Denominator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* _Vaclav Kotesovec_, Feb 12 2024 *)

%Y See A323290 for more information.

%K nonn,frac

%O 0,3

%A _Alois P. Heinz_, Jan 09 2019