login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2

%I #15 May 20 2021 15:18:58

%S 0,1,3,13,51,208,842,3419,13873,56303,228487,927252,3762976,15270937,

%T 61972603,251497601,1020629091,4141923220,16808778106,68213486019,

%U 276824385713,1123410413427,4559031003423,18501487472296,75082849498048,304701678564513,1236542213577475,5018143166006245

%N A323265(n)/2.

%H Colin Barker, <a href="/A323266/b323266.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,-5,7,-1).

%F From _Colin Barker_, Jan 16 2019: (Start)

%F G.f.: x^2*(1 - x)^2 / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5).

%F a(n) = 5*a(n-1) - 3*a(n-2) - 5*a(n-3) + 7*a(n-4) - a(n-5) for n>5.

%F (End)

%t LinearRecurrence[{5,-3,-5,7,-1},{0,1,3,13,51},30] (* _Harvey P. Dale_, May 20 2021 *)

%o (PARI) concat(0, Vec(x^2*(1 - x)^2 / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5) + O(x^30))) \\ _Colin Barker_, Jan 16 2019

%Y Cf. A323265.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_, Jan 09 2019