Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jan 11 2019 06:42:24
%S 0,0,0,1,3,13,54,216,884,3575,14527,58925,239168,970540,3938720,
%T 15984049,64866679,263242213,1068291334,4335346204,17593728716,
%U 71398977047,289751765259,1175872383597,4771932491856,19365485592728,78589131949936,318930895432049,1294287308406283
%N The sequence denoted by j_n used in the calculation of A323260.
%H K. A. Van'kov, V. M. Zhuravlyov, <a href="https://www.mccme.ru/free-books/matpros/pdf/mp-22.pdf#page=127">Regular tilings and generating functions</a>, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See Table 1.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-6,-6,8,5,-1).
%F Van'kov and Zhuravlyov give recurrences.
%F G.f.: x^4*(1-2*x^2+3*x^3)/(x^5-7*x^4+5*x^3+3*x^2-5*x+1)/(1+x)^2 . - _R. J. Mathar_, Jan 11 2019
%Y Cf. A323260-A323269.
%K nonn,easy
%O 1,5
%A _N. J. A. Sloane_, Jan 09 2019