login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A323244(n) for n > 1, and f(1) = -1.
3

%I #8 Jan 11 2019 20:36:39

%S 1,2,2,3,2,4,2,5,6,7,2,8,2,9,3,5,2,10,2,11,12,11,2,13,14,15,4,13,2,8,

%T 2,16,17,18,19,17,2,20,21,13,2,22,2,23,24,25,2,15,21,26,24,27,2,28,29,

%U 30,21,31,2,32,2,33,9,13,8,32,2,34,35,36,2,37,2,38,8,39,40,41,2,42,21,43,2,44,45,46,47,16,2,10,48,49,50,51,52,30,2,53,14,16,2

%N Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A323244(n) for n > 1, and f(1) = -1.

%C Restricted growth sequence transform of function f, defined as f(1) = -1, and for n > 1, f(n) = A033879(A156552(n)).

%H Antti Karttunen, <a href="/A323245/b323245.txt">Table of n, a(n) for n = 1..4096</a>

%o (PARI)

%o up_to = 1024;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));

%o A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k));

%o A323245aux(n) = if(1==n,-1,A323244(n));

%o v323245 = rgs_transform(vector(up_to, n, A323245aux(n)));

%o A323245(n) = v323245[n];

%K nonn

%O 1,2

%A _Antti Karttunen_, Jan 10 2019