Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 11 2019 20:36:15
%S 1,2,2,3,2,4,2,5,6,7,2,8,2,9,3,10,2,11,2,12,13,14,2,15,16,17,18,19,2,
%T 8,2,20,21,22,23,24,2,25,26,15,2,27,2,28,29,30,2,31,26,32,33,34,2,35,
%U 36,37,26,38,2,39,2,40,41,42,43,44,2,45,46,47,2,48,2,49,8,50,51,52,2,53,54,55,2,56,57,58,59,60,2,61,62,63,64,65,66,67,2,68,69,60,2
%N Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = [A001222(n), A323244(n)] for n > 1, and f(1) = 0.
%C Restricted growth sequence transform of function f, where f(1) = 0 and f(n) = [A001222(n), A323244(n)] for n > 1.
%C Equally, restricted growth sequence transform of function f, where f(1) = 0 and f(n) = A318310(A156552(n)) for n > 1.
%C For all i, j:
%C a(i) = a(j) => A323245(i) = A323245(j), [Equally: A323244(i) = A323244(j)]
%C a(i) = a(j) => A323246(i) = A323246(j). [Equally: A323248(i) = A323248(j)]
%H Antti Karttunen, <a href="/A323240/b323240.txt">Table of n, a(n) for n = 1..4096</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%o (PARI)
%o up_to = 1024;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
%o A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k));
%o A323240aux(n) = if(1==n,-1,[bigomega(n),A323244(n)]);
%o v323240 = rgs_transform(vector(up_to, n, A323240aux(n)));
%o A323240(n) = v323240[n];
%Y Cf. A001222, A156552, A318310, A323244, A323245, A323246, A323248.
%Y Cf. also A323168.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jan 10 2019