login
a(n) = (4*n^3 + 30*n^2 + 50*n)/3 + 1.
1

%I #13 Feb 17 2021 17:29:46

%S 1,29,85,177,313,501,749,1065,1457,1933,2501,3169,3945,4837,5853,7001,

%T 8289,9725,11317,13073,15001,17109,19405,21897,24593,27501,30629,

%U 33985,37577,41413,45501,49849,54465,59357,64533,70001,75769,81845,88237,94953,102001

%N a(n) = (4*n^3 + 30*n^2 + 50*n)/3 + 1.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1)

%p a := n -> (4*n^3 + 30*n^2 + 50*n)/3 + 1: seq(a(n), n = 0..40);

%t Table[(4n^3+30n^2+50n)/3+1,{n,0,40}] (* _Harvey P. Dale_, May 24 2019 *)

%Y Column 4 of A323222.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Jan 26 2019