login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, and for any n > 1, let p be the greatest prime factor of n, and e be its exponent, then a(n) = p^a(e).
2

%I #19 Mar 01 2023 01:50:18

%S 1,2,3,4,5,3,7,8,9,5,11,3,13,7,5,16,17,9,19,5,7,11,23,3,25,13,27,7,29,

%T 5,31,32,11,17,7,9,37,19,13,5,41,7,43,11,5,23,47,3,49,25,17,13,53,27,

%U 11,7,19,29,59,5,61,31,7,8,13,11,67,17,23,7,71,9,73

%N a(1) = 1, and for any n > 1, let p be the greatest prime factor of n, and e be its exponent, then a(n) = p^a(e).

%C This sequence is a recursive variant of A053585.

%C All terms belong to A164336.

%H Robert Israel, <a href="/A323129/b323129.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) <= n with equality iff n belongs to A164336.

%F a(n) = A006530(n)^a(A071178(n)) for any n > 1.

%e a(1458) = a(2 * 3^6) = 3^a(6) = 3^a(2*3) = 3^3 = 27.

%p f:= proc(n) option remember;

%p local F,t;

%p F:= ifactors(n)[2];

%p t:= F[max[index](map(t -> t[1],F))];

%p t[1]^procname(t[2]);

%p end proc:

%p f(1):= 1:

%p map(f, [$1..100]); # _Robert Israel_, Jan 07 2019

%t Nest[Append[#, Last@ FactorInteger[Length[#] + 1] /. {p_, e_} :> p^#[[e]] ] &, {1}, 72] (* _Michael De Vlieger_, Jan 07 2019 *)

%o (PARI) a(n) = if (n==1, 1, my (f=factor(n)); f[#f~,1]^a(f[#f~,2]))

%Y See A323130 for the variant involving the least prime factor.

%Y Cf. A006530, A053585, A071178, A164336.

%K nonn,nice,look

%O 1,2

%A _Rémy Sigrist_, Jan 05 2019