Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jan 22 2019 18:28:51
%S 1,1,2,2,4,5,7,10,14,17,24,30,40,50,66,81,104,128,161,197,246,300,369,
%T 446,546,656,796,952,1148,1366,1637,1940,2311,2730,3234,3806,4489,
%U 5262,6181,7225,8454,9846,11484,13335,15499,17948,20796,24017,27751,31970,36837
%N Number of double-free integer partitions of n.
%C An integer partition is double-free if no part is twice any other part.
%H Alois P. Heinz, <a href="/A323092/b323092.txt">Table of n, a(n) for n = 0..400</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Double-FreeSet.html">Double-Free Set</a>
%e The a(1) = 1 through a(8) = 14 double-free integer partitions:
%e (1) (2) (3) (4) (5) (6) (7) (8)
%e (11) (111) (22) (32) (33) (43) (44)
%e (31) (41) (51) (52) (53)
%e (1111) (311) (222) (61) (62)
%e (11111) (411) (322) (71)
%e (3111) (331) (332)
%e (111111) (511) (431)
%e (4111) (611)
%e (31111) (2222)
%e (1111111) (3311)
%e (5111)
%e (41111)
%e (311111)
%e (11111111)
%t Table[Length[Select[IntegerPartitions[n],Intersection[#,2*#]=={}&]],{n,30}]
%Y Cf. A018819, A051424, A101417, A120641, A276431, A305148, A323093, A323094.
%K nonn
%O 0,3
%A _Gus Wiseman_, Jan 04 2019