login
Coefficients arising in the enumeration of configurations of linear chains.
3

%I #19 Jan 04 2019 10:31:30

%S 0,0,0,0,1,21,282,3102,30583,282368,2494567

%N Coefficients arising in the enumeration of configurations of linear chains.

%C In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence, is equal to p_{n,m}^{(l)} with m = 0 and l = 5.

%C For a possible interpretation of this sequence (in the context of a 5-dimensional hypercubic lattice), see the comments by Bert Dobbelaere for the sequence A038748 about a cubic lattice.

%C We have p_{n,0}^{(2)} = A038746(n), p_{n,0}^{(3)} = A038748(n), and p_{n,0}^{(4)} = A323037(n). For p_{n,0}^{(l)} for l = 6..10, see Table II (p. 1094) in the paper by Nemirovsky et al. (1992).

%H M. E. Fisher and B. J. Hiley, <a href="http://dx.doi.org/10.1063/1.1731729">Configuration and free energy of a polymer molecule with solvent interaction</a>, J. Chem. Phys., 34 (1961), 1253-1267.

%H A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090).

%Y Cf. A038726, A038729, A038746, A038748, A323037.

%K nonn,more

%O 1,6

%A _Petros Hadjicostas_, Jan 03 2019