login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that 399*2^k+1 is prime.
1

%I #23 Feb 29 2020 03:43:24

%S 2,6,11,14,15,42,59,66,75,91,102,126,131,195,795,811,1410,1631,2219,

%T 2259,2394,2971,3811,5742,8725,8822,10950,11870,15895,16350,24731,

%U 27819,29669,30151,42499,43899,57134,59759,77622,78675,78735,81739,87379,127975

%N Numbers k such that 399*2^k+1 is prime.

%H Jeppe Stig Nielsen, <a href="/A323044/b323044.txt">Table of n, a(n) for n = 1..51</a> (terms n = 1..48 from Robert Price)

%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1a.html">List of primes k*.2^n + 1 for 300 < k < 600</a>

%H Y. Gallot, <a href="http://www.utm.edu/research/primes/programs/gallot/index.html">Proth.exe: Windows Program for Finding Large Primes</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k*2^n - 1 for k < 300</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProthPrime.html">Proth Prime</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%p select(k->isprime(399*2^k+1),[$1..1000]); # _Muniru A Asiru_, Jan 03 2019

%t Select[Range[1000], PrimeQ[399*2^# + 1] &]

%K nonn,hard

%O 1,1

%A _Robert Price_, Jan 03 2019