Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 04 2019 17:36:30
%S 1,1,2,1,2,2,1,1,3,2,2,2,1,1,4,1,2,3,1,2,3,2,1,2,2,1,4,1,2,4,1,1,3,2,
%T 3,3,1,1,3,2,2,3,1,2,6,1,1,2,1,2,4,1,1,4,3,1,3,2,2,4,1,1,4,1,3,3,1,2,
%U 3,3,2,3,1,1,4,1,3,3,1,2,5,2,1,3,3,1,4,2,1,6,1,1,2,1,3,2,1,1,5,2,2,4,1,1,7
%N Number of divisors d of n such that d+2 is prime.
%H Antti Karttunen, <a href="/A322976/b322976.txt">Table of n, a(n) for n = 1..10395</a>
%H Antti Karttunen, <a href="/A322976/a322976.txt">Data supplement: n, a(n) computed for n = 1..100000</a>
%F a(n) = Sum_{d|n} A010051(d+2).
%F a(A000040(n)) = 1 + A100821(n).
%e 10395 has 32 divisors: [1, 3, 5, 7, 9, 11, 15, 21, 27, 33, 35, 45, 55, 63, 77, 99, 105, 135, 165, 189, 231, 297, 315, 385, 495, 693, 945, 1155, 1485, 2079, 3465, 10395]. When 2 is added to each, as 1+2 = 3, 3+2 = 5, 5+2 = 7, etc, the only sums that are primes are: [3, 5, 7, 11, 13, 17, 23, 29, 37, 47, 79, 101, 107, 137, 167, 191, 233, 317, 947, 1487, 2081, 3467], thus (a10395) = 22.
%t Array[DivisorSum[#, 1 &, PrimeQ[# + 2] &] &, 105] (* _Michael De Vlieger_, Jan 04 2019 *)
%o (PARI) A322976(n) = sumdiv(n, d, isprime(d+2));
%Y Cf. A010051, A067513, A072627, A100821, A322358, A322975, A322977, A322978.
%K nonn
%O 1,3
%A _Antti Karttunen_, Jan 04 2019