Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 18 2021 09:52:25
%S 1,1,4,1,12,18,1,24,120,96,1,40,420,1200,600,1,60,1080,6720,12600,
%T 4320,1,84,2310,25200,105840,141120,35280,1,112,4368,73920,554400,
%U 1693440,1693440,322560,1,144,7560,183456,2162160,11975040,27941760,21772800,3265920
%N Coefficient triangle of polynomials recursively defined by P(n,x) = (n+1)*(n+1)! + x*Sum_{k=1..n} k^2*n!/(n+1-k)!*P(n-k,x) with P(0,x) = 1.
%H B. Heim, F. Luca, and M. Neuhauser, <a href="https://doi.org/10.1142/S1793042119500726">Recurrence relations for polynomials obtained by arithmetic functions</a>, International Journal of Number Theory, Vol. 15, No. 06, pp. 1291-1303 (2019).
%F A(n,k) = (n+1)!*(n+1+k)!/((k+1)!*(2k+1)!*(n-k)!) (proved);
%F The rows correspond to the polynomials:
%F P(0,x) = 1;
%F P(1,x) = x + 4;
%F P(2,x) = x^2 + 12*x + 18;
%F P(3,x) = x^3 + 24*x^2 + 120*x + 96;
%F ...
%F They satisfy the recurrence relation P(n+1,x) = (x+3*n+3)*P(n,x) + (n+1)*(x-3*n)*P(n-1,x) + (n+1)*n*(n-1)*P(n-2,x) with P(0,x) = 1, P(1,x) = (x+3)*P(0,x) + 1, P(2,x) = (x+6)*P(1,x) + 2*(x-3)*P(0,x) (proved).
%e 1;
%e 1, 4;
%e 1, 12, 18;
%e 1, 24, 120, 96;
%e 1, 40, 420, 1200, 600;
%e 1, 60, 1080, 6720, 12600, 4320;
%e 1, 84, 2310, 25200, 105840, 141120, 35280;
%e 1, 112, 4368, 73920, 554400, 1693440, 1693440, 322560;
%e 1, 144, 7560, 183456, 2162160, 11975040, 27941760, 21772800, 3265920
%p for n from 0 to nn do for k from 0 to n do printf("%g, ",(n+1)!*binomial(2*n+1-k,2*(n-k)+1)/(n-k+1)!); end do; printf("\n"); end do;
%o (PARI) tabl = (nn)->for(n=0,nn,for(k=0,n,print1((n+1)!*binomial(2*n+1-k,2*(n-k)+1)/(n-k+1)!,", "););print();)
%Y Cf. A089231 (polynomials satisfy a similar recurrence relation with k instead of k^2 and (n+1)! instead of (n+1)*(n+1)! (proved)), A001563 (right diagonal).
%K easy,nonn,tabl
%O 0,3
%A _Markus Neuhauser_, Jan 01 2019