login
Numbers k such that 325*2^k+1 is prime.
0

%I #10 Dec 20 2024 10:04:09

%S 2,14,18,32,42,72,144,174,282,318,828,1338,2154,2750,4034,9858,13692,

%T 49052,63522,86784,117162,126014,273090,302574,413862,901902,3231474,

%U 4097700

%N Numbers k such that 325*2^k+1 is prime.

%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1a.html">List of primes k.2^n + 1 for 300 < k < 600</a>

%H Y. Gallot, <a href="http://www.utm.edu/research/primes/programs/gallot/index.html">Proth.exe: Windows Program for Finding Large Primes</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ProthPrime.html">Proth Prime</a>

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%p select(n->isprime(325*2^n+1),[$1..1000]); # _Muniru A Asiru_, Dec 31 2018

%t Select[Range[1000], PrimeQ[325*2^# + 1] &] (* _Robert Price_, Dec 31 2018 *)

%Y Cf. A002255, A050527.

%K nonn,more,hard

%O 1,1

%A _Robert Price_, Dec 31 2018

%E a(27)-a(28) from _Jeppe Stig Nielsen_, Dec 20 2024