Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 02 2023 09:09:17
%S 1,9,118,1773,28650,484578,8457708,151054173,2745685954,50606020854,
%T 943283037684,17746990547634,336517405188900,6423775409047716,
%U 123332141503711704,2379824766494404317,46124764901514110898,897483137740689843054,17524230350476917414180
%N a(0)=1; for n>0, a(n) is the number of rooted 3-regular maps with 2n vertices on the projective plane.
%H Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, <a href="https://doi.org/10.5802/alco.268">Enumeration of non-oriented maps via integrability</a>, Alg. Combin. 5 (6) (2022) p 1363-1390, A.3.
%H Evgeniy Krasko and Alexander Omelchenko, <a href="https://doi.org/10.1016/j.disc.2018.07.013">Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus</a>, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also <a href="https://arxiv.org/abs/1709.03225">arXiv:1709.03225 [math.CO]</a>. See Th. 3.3 and Table 2.
%F Theorem 3.3 gives an explicit formula.
%F From _Vaclav Kotesovec_, Dec 30 2022: (Start)
%F Recurrence: (n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 12*(n-3)*(n-2)*(n-1)*(108*n^2 - 432*n + 505)*a(n-2) - 576*(n-3)*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*a(n-4) + 995328*(n-4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*a(n-6).
%F a(n) ~ Gamma(1/4) * 2^(2*n - 5/4) * 3^(3*n/2 + 5/4) / (Pi * n^(5/4)) * (1 - 2^(7/4)*sqrt(Pi)/(Gamma(1/4)*3^(3/4)*n^(1/4)) + Pi/(Gamma(1/4)^2*sqrt(3*n))).
%F (End)
%p A[0]:= 1: A[1]:= 9: A[2]:= 118: A[3]:= 1773: A[4]:= 28650: A[5]:= 484578:
%p for n from 6 to 20 do
%p A[n]:= 995328*(n - 4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*A[n - 6]/((n - 3)*(n - 2)*(n - 1)*n*(n + 1)) - 576*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*A[n - 4]/((n - 2)*(n - 1)*n*(n + 1)) + 12*(108*n^2 - 432*n + 505)*A[n - 2]/(n*(n + 1))
%p od:
%p seq(A[i],i=0..20); # _Robert Israel_, Dec 30 2022
%t a[n_] := -((2^(2 n + 1) (3 n)!!)/((n + 1)! n!!)) + (3 2^(2 n))/(n + 1)!! Sum[(3^k (2 k - 1)!! (3 n - 2 k - 1)!!)/(2^k k! (n - k)!), {k, 0, n}];
%t Table[a[n], {n, 0, 20}] (* _Andrey Zabolotskiy_, Dec 29 2022 *)
%Y Cf. A002005 (genus 0)
%K nonn
%O 0,2
%A _Evgeniy Krasko_, Dec 31 2018
%E Added initial term a(0)=1 to match Taylor series expansion in Theorem 3.3. - _N. J. A. Sloane_, Jan 11 2019
%E Terms a(11) and beyond from _Andrey Zabolotskiy_, Dec 29 2022