Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Jan 07 2020 16:50:47
%S 1,1,7,100,2840,129428,8613997,791557152,95921167710,14818153059968,
%T 2842735387366627,663020104070865664,184757202542187563476,
%U 60623405966739216871680,23135486197103263598936745,10160292704659539620791062528,5087671168376607498331875818106
%N The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n and whose first column consists of 1, n + 1, ..., 2*n - 1.
%C The matrix M(n) differs from that of A306457 in using successive positive integers in place of successive prime numbers. [Modified by _Stefano Spezia_, Dec 20 2019 at the suggestion of _Michel Marcus_]
%C The trace of M(n) is A000027(n).
%C The sum of the first row of M(n) is A000217(n).
%C The sum of the first column of M(n) is A005448(n). [Corrected by _Stefano Spezia_, Dec 19 2019]
%C For n > 1, the sum of the superdiagonal of M(n) is A005843(n).
%C For n > 0, the sum of the (k-1)-th superdiagonal of M(n) is A003991(n,k). - _Stefano Spezia_, Dec 29 2019
%C For n > 1 and k > 0, the sum of the k-th subdiagonal of M(n) is A120070(n,k). - _Stefano Spezia_, Dec 31 2019
%H Stefano Spezia, <a href="/A322909/b322909.txt">Table of n, a(n) for n = 0..35</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>
%e For n = 1 the matrix M(1) is
%e 1
%e with permanent a(1) = 1.
%e For n = 2 the matrix M(2) is
%e 1, 2
%e 3, 1
%e with permanent a(2) = 7.
%e For n = 3 the matrix M(3) is
%e 1, 2, 3
%e 4, 1, 2
%e 5, 4, 1
%e with permanent a(3) = 100.
%p with(LinearAlgebra):
%p a:= n-> `if`(n=0, 1, Permanent(ToeplitzMatrix([
%p seq(i, i=2*n-1..n+1, -1), seq(i, i=1..n)]))):
%p seq(a(n), n = 0 .. 15);
%t b[n_]:=n; a[n_]:=If[n==0,1,Permanent[ToeplitzMatrix[Join[{b[1]}, Array[b, n-1, {n+1, 2*n-1}]], Array[b, n]]]]; Array[a, 15,0]
%o (PARI) tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, n+i-1)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
%o a(n) = matpermanent(tm(n)); \\ _Stefano Spezia_, Dec 19 2019
%Y Cf. A000027, A000217, A003991, A005448, A005843, A120070, A306457, A322908 (determinant of M(n)).
%K nonn
%O 0,3
%A _Stefano Spezia_, Dec 30 2018
%E a(0) = 1 prepended by _Stefano Spezia_, Dec 19 2019