login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322850
Number of times 2^k for k < n-1 appears as a substring within 2^n.
1
0, 0, 0, 0, 1, 1, 1, 3, 1, 2, 3, 3, 1, 3, 4, 3, 0, 3, 5, 5, 3, 3, 4, 4, 5, 4, 5, 6, 4, 3, 6, 8, 4, 4, 6, 3, 3, 5, 5, 6, 5, 6, 7, 5, 9, 9, 6, 8, 6, 7, 9, 9, 3, 5, 10, 5, 3, 11, 10, 8, 8, 6, 11, 7, 10, 13, 10, 10, 8, 7, 13, 16, 12, 9, 13, 8, 9, 16, 8, 9, 12, 15, 14, 7, 14, 9
OFFSET
0,8
FORMULA
a(n) >= A322849(n), for n >= 4.
EXAMPLE
n = 0, a(n) = 0, 2^n = 1 - no solutions;
n = 1, a(n) = 0, 2^n = 2 - no solutions;
n = 2, a(n) = 0, 2^n = 4 - no solutions;
n = 3, a(n) = 0, 2^n = 8 - no solutions;
n = 4, a(n) = 1, 2^n = 16 - solution is 1;
n = 5, a(n) = 1, 2^n = 32 - solution is 2;
n = 6, a(n) = 1, 2^n = 64 - solution is 4;
n = 7, a(n) = 3, 2^n = 128 - solutions are 1,2,8;
n = 14, a(n) = 4, 2^n = 16384 - solutions are 1,4,8,16;
n = 15, a(n) = 3, 2^n = 32768 - solutions are 2,8,32;
n = 16, a(n) = 0, 2^n = 65536 - no solutions.
MATHEMATICA
Array[If[# < 4, Total@ DigitCount[2^#, 10, 2^Range[0, Min[# - 1, 3]]], Total@ DigitCount[2^#, 10, {1, 2, 4, 8}]] &, 85, 0] (* Michael De Vlieger, Dec 31 2018 *)
PROG
(Python 3.7)
import re
results = []
start_n = 0
N = 100
compare_list = [] # Store powers up to n-1
current_num = int(pow(2, start_n-1)) # Calculate (n-1) power. Convert to integer for better precision
for n in range(start_n, N):
if n == 0:
current_num = 1
else:
current_num += current_num
current_string = str(current_num)
count = 0
for test_str in compare_list:
count += len(re.findall(test_str, current_string))
compare_list.append(current_string)
results.append(count)
a=1
print(results)
(PARI) isp2(n) = (n==1) || (n==2) || (ispower(n, , &k) && (k==2));
a(n) = {my(d=digits(2^n), nb = 0); for (i=1, #d-1, for (j=1, #d-i+1, my(nd = vector(i, k, d[j+k-1])); if (nd[1] != 0, nb += isp2(fromdigits(nd))); ); ); nb; } \\ Michel Marcus, Dec 30 2018
CROSSREFS
Cf. A065712 (1), A065710 (2), A065715 (4), A065719 (8).
Cf. A322849.
Sequence in context: A026181 A327239 A322849 * A337566 A106601 A325533
KEYWORD
base,nonn
AUTHOR
Gaitz Soponski, Dec 28 2018
STATUS
approved