Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 24 2019 22:31:26
%S 1,1,4,32,424,7696,173442,4619266,141315896,4874012942,186981188532,
%T 7896318230898,364045464940596,18196879341802488,980406767669688312,
%U 56648325010279262864,3494752526532046751322,229295129566323954429582,15944415062268028208782178,1171388932048172852048806000,90667183883120180538001042398
%N G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x)^(1/2) )^n / ( 2 - (1+x)^n * A(x)^(1/2) )^(n+1).
%C It is remarkable that the g.f. should consist entirely of integer coefficients.
%H Paul D. Hanna, <a href="/A322735/b322735.txt">Table of n, a(n) for n = 0..200</a>
%F G.f. A(x) along with B(x) = A(x)^(1/2) satisfy:
%F (1) A(x) = Sum_{n>=0} ( (1+x)^n - B(x) )^n / ( 2 - (1+x)^n*B(x) )^(n+1),
%F (2) A(x) = Sum_{n>=0} ( (1+x)^n + B(x) )^n / ( 2 + (1+x)^n*B(x) )^(n+1).
%e G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 424*x^4 + 7696*x^5 + 173442*x^6 + 4619266*x^7 + 141315896*x^8 + 4874012942*x^9 + 186981188532*x^10 + ...
%e such that A(x) and B = A(x)^(1/2) satisfy
%e A(x) = 1/(2 - B) + ((1+x) - B)/(2 - (1+x)*B)^2 + ((1+x)^2 - B)^2/(2 - (1+x)^2*B)^3 + ((1+x)^3 - B)^3/(2 - (1+x)^3*B)^4 + ((1+x)^4 - B)^4/(2 - (1+x)^4*B)^5 + ((1+x)^5 - B)^5/(2 - (1+x)^5*B)^6 + ...
%e also,
%e A(x) = 1/(2 + B) + ((1+x) + B)/(2 + (1+x)*B)^2 + ((1+x)^2 + B)^2/(2 + (1+x)^2*B)^3 + ((1+x)^3 + B)^3/(2 + (1+x)^3*B)^4 + ((1+x)^4 + B)^4/(2 + (1+x)^4*B)^5 + ((1+x)^5 + B)^5/(2 + (1+x)^5*B)^6 + ...
%e Notice that A(x)^(1/2) is not an integer series, but instead begins
%e A(x)^(1/2) = 1 + 2*(x/4) + 30*(x/4)^2 + 964*(x/4)^3 + 51894*(x/4)^4 + 3807644*(x/4)^5 + 345572460*(x/4)^6 + 36985627016*(x/4)^7 + 4541283789862*(x/4)^8 + 628123762214444*(x/4)^9 + 96578670976842436*(x/4)^10 + ...
%e thus, given the definition, it is remarkable that A(x) should be an integer series.
%o (PARI) {a(n) = my(A=[1,1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( (1+x)^m - Ser(A)^(1/2) )^m / (2 - (1+x)^m*Ser(A)^(1/2))^(m+1) ) ) ); A[n+1]}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A317350, A322737.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 24 2019