login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of times the digit 5 appears in the first 10^n decimal digits of Euler's number e = exp(1), counting starts after the decimal point.
9

%I #9 Apr 08 2019 03:13:01

%S 0,13,85,992,10034,100087,999903,9998042,100003884,999967300

%N Number of times the digit 5 appears in the first 10^n decimal digits of Euler's number e = exp(1), counting starts after the decimal point.

%C It is not known if e is normal, but the distribution of decimal digits found for the first 10^n digits of e shows no statistically significant departure from a uniform distribution.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/eDigits.html">e Digits</a>.

%p a:=proc(n)

%p local digits, EXP1, C, i;

%p digits:=10^n+100;

%p EXP1:=convert(frac(evalf[digits](exp(1))), string)[2..digits-99];

%p C:=0;

%p for i from 1 to length(EXP1) do

%p if EXP1[i]="5" then C:=C+1; fi;

%p od;

%p return(C);

%p end;

%t Table[Count[IntegerDigits[IntegerPart[(E - 2)*10^10^n]], 5], {n, 7}] (* _Robert Price_, Apr 07 2019 *)

%Y Cf. A001113, A099296, A322646, A322715, A322716, A322717, A322718, A322719, A322721, A322722, A322723, A322724.

%K nonn,base,more

%O 1,2

%A _Martin Renner_, Dec 24 2018