%I #9 Apr 08 2019 03:13:01
%S 0,13,85,992,10034,100087,999903,9998042,100003884,999967300
%N Number of times the digit 5 appears in the first 10^n decimal digits of Euler's number e = exp(1), counting starts after the decimal point.
%C It is not known if e is normal, but the distribution of decimal digits found for the first 10^n digits of e shows no statistically significant departure from a uniform distribution.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/eDigits.html">e Digits</a>.
%p a:=proc(n)
%p local digits, EXP1, C, i;
%p digits:=10^n+100;
%p EXP1:=convert(frac(evalf[digits](exp(1))), string)[2..digits-99];
%p C:=0;
%p for i from 1 to length(EXP1) do
%p if EXP1[i]="5" then C:=C+1; fi;
%p od;
%p return(C);
%p end;
%t Table[Count[IntegerDigits[IntegerPart[(E - 2)*10^10^n]], 5], {n, 7}] (* _Robert Price_, Apr 07 2019 *)
%Y Cf. A001113, A099296, A322646, A322715, A322716, A322717, A322718, A322719, A322721, A322722, A322723, A322724.
%K nonn,base,more
%O 1,2
%A _Martin Renner_, Dec 24 2018