Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 29 2019 21:07:16
%S 2,7,98,1005,10106,98924,1000114,10000179,99998381,1000042849
%N Number of times the digit 1 appears in the first 10^n decimal digits of sqrt(2), sometimes called Pythagoras's constant, counting after the decimal point.
%C It is not known if sqrt(2) is normal, but the distribution of decimal digits found for the first 10^n digits of sqrt(2) shows no statistically significant departure from a uniform distribution.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagorassConstantDigits.html">Pythagoras's Constant Digits</a>.
%p a:=proc(n)
%p local digits, SQRT2, C, i;
%p digits:=10^n+100;
%p SQRT2:=convert(frac(evalf[digits](sqrt(2))),string)[2..digits-99];
%p C:=0;
%p for i from 1 to length(SQRT2) do
%p if SQRT2[i]="1" then C:=C+1; fi;
%p od;
%p return(C);
%p end;
%t Table[DigitCount[IntegerPart[(Sqrt[2]-1)*10^10^n], 10, 1], {n,1,10}] (* _Robert Price_, Mar 29 2019 *)
%Y Cf. A002193, A099292, A322641, A322643, A322644, A322645, A322646, A322647, A322648, A322649, A322650.
%K nonn,base,more
%O 1,1
%A _Martin Renner_, Dec 21 2018