login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322622 E.g.f.: S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)), where S(x,y) = Sum_{n>=0} Sum_{k=0..2*n+1} T(n,k) * x^(2*n+1-k)*y^k/(2*n+1)!, as a triangle of coefficients T(n,k) read by rows. 4
1, 1, 1, 6, 6, 1, 1, 40, 140, 140, 40, 1, 1, 224, 2562, 7000, 7000, 2562, 224, 1, 1, 1152, 39384, 260736, 605808, 605808, 260736, 39384, 1152, 1, 1, 5632, 541310, 8131200, 39032400, 80735424, 80735424, 39032400, 8131200, 541310, 5632, 1, 1, 26624, 6908772, 225065984, 2101762520, 8105175936, 15355426944, 15355426944, 8105175936, 2101762520, 225065984, 6908772, 26624, 1, 1, 122880, 83702010, 5726156800, 100096487400, 680914730496, 2234443571360, 3951806601600, 3951806601600, 2234443571360, 680914730496, 100096487400, 5726156800, 83702010, 122880, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A322194 for another description of the e.g.f. of this sequence.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..2652 terms of this triangle read by rows 0..50.

FORMULA

E.g.f.: S(x,y) and related series C(x,y) satisfy the following identities.

(1) C(x,y)^2 - S(x,y)^2 = 1.

(2a) C(x,y) = cosh(x) * cosh(y) / (1 - sinh(x)*sinh(y)).

(2b) S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).

(3a) cosh(x) = C(x,y) * cosh(y) / (1 + sinh(y)*S(x,y)).

(3b) sinh(x) = (S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).

(3c) cosh(y) = C(x,y) * cosh(x) / (1 + sinh(x)*S(x,y)).

(3d) sinh(y) = (S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).

(4a) exp(x) = (C(x,y)*cosh(y) + S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).

(4b) exp(y) = (C(x,y)*cosh(x) + S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).

(5a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) * (cosh(y) - sinh(y)*C(x,y)) / (1 - sinh(y)^2*S(x,y)^2).

(5b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) * (cosh(x) - sinh(x)*C(x,y)) / (1 - sinh(x)^2*S(x,y)^2).

(5c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) * (cosh(y) + sinh(y)*cosh(x)) / (1 - sinh(x)^2*sinh(y)^2).

(6a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) / (cosh(y) + sinh(y)*C(x,y)).

(6b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) / (cosh(x) + sinh(x)*C(x,y)).

(6c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) / (cosh(y) - sinh(y)*cosh(x)).

(6d) C(x,y) + S(x,y) = (cosh(y) + sinh(y)*cosh(x)) / (cosh(x) - sinh(x)*cosh(y)).

SPECIAL ARGUMENTS.

S(x, y=0) = sinh(x).

S(x, y=x) = 2*sinh(x) / (1 - sinh(x)^2).

S(x, y=-x) = 0.

EXAMPLE

E.g.f.: S(x,y) = (1*x + 1*y) + (1*x^3 + 6*x^2*y + 6*x*y^2 + 1*y^3)/3! + (1*x^5 + 40*x^4*y + 140*x^3*y^2 + 140*x^2*y^3 + 40*x*y^4 + 1*y^5)/5! + (1*x^7 + 224*x^6*y + 2562*x^5*y^2 + 7000*x^4*y^3 + 7000*x^3*y^4 + 2562*x^2*y^5 + 224*x*y^6 + 1*y^7)/7! + ...

where S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).

This irregular triangle of coefficients of x^(2*n+1-k)*y^k/(2*n+1)! in C(x,y) begins

1, 1;

1, 6, 6, 1;

1, 40, 140, 140, 40, 1;

1, 224, 2562, 7000, 7000, 2562, 224, 1;

1, 1152, 39384, 260736, 605808, 605808, 260736, 39384, 1152, 1;

1, 5632, 541310, 8131200, 39032400, 80735424, 80735424, 39032400, 8131200, 541310, 5632, 1;

1, 26624, 6908772, 225065984, 2101762520, 8105175936, 15355426944, 15355426944, 8105175936, 2101762520, 225065984, 6908772, 26624, 1; ...

RELATED SERIES.

The series C(x,y), such that C(x,y)^2 - S(x,y)^2 = 1, begins

C(x,y) = 1 + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...

The e.g.f. may be written with coefficients of x^(2*n+1-k)*y^k/((2*n+1-k)!*k!), as follows:

S(x,y) = (1*x + 1*y) + (1*x^3/3! + 2*x^2*y/2! + 2*x*y^2/2! + 1*y^3/3!) + (1*x^5/5! + 8*x^4*y/4! + 14*x^3*y^2/(3!*2!) + 14*x^2*y^3/(2!*3!) + 8*x*y^4/4! + 1*y^5/5!) + (1*x^7/7! + 32*x^6*y/6! + 122*x^5*y^2/(5!*2!) + 200*x^4*y^3/(4!*3!) + 200*x^3*y^4/(3!*4!) + 122*x^2*y^5/(2!*5!) + 32*x*y^6/6! + 1*y^7/7!) + ...

these coefficients are described by triangle A322194.

PROG

(PARI) {T(n, k) = my(X=x+x*O(x^(2*n+1-k)), Y=y+y*O(y^k));

S = (sinh(X) + sinh(Y))/(1 - sinh(X)*sinh(Y));

(2*n+1)!*polcoeff(polcoeff(S, 2*n+1-k, x), k, y)}

/* Print as a triangle */

for(n=0, 10, for(k=0, 2*n+1, print1( T(n, k), ", ")); print(""))

CROSSREFS

Cf. A322620 (C + S), A322621 (C), A322625 (main diagonal), A322194.

Sequence in context: A172350 A205457 A155868 * A176565 A176567 A283100

Adjacent sequences: A322619 A322620 A322621 * A322623 A322624 A322625

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Dec 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 6 17:30 EST 2023. Contains 360110 sequences. (Running on oeis4.)