login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for cosh(gamma).
3

%I #13 Jul 07 2024 10:17:32

%S 1,5,1,5,4,1,5,1,1,2,9,1,1,8,1,16,1,2,1,2,1,1,1,4,27,2,1,1,1,2,1,8,1,

%T 3,5,1,1,1,1,1,16,2,1,4,1,2,62,1,8,12,1,4,1,4,3,1,1,4,1,3,20,1,2,2,

%U 106,1,13,2,7,2,1,2,4,7,1,2,1,1,2,11,1,1,2,24,1,2,2,1,1,12

%N Continued fraction for cosh(gamma).

%C Continued fraction of (exp(gamma)+exp(-gamma))/2 = cosh(gamma) (A147708), where gamma is the Euler-Mascheroni constant (A001620).

%C See A322603 for the continued fraction of sinh(gamma).

%e 1 + 1/(5 + 1/(1 + 1/(5 + 1/(4 + 1/(1 + 1/(5 + 1/(1 + ...))))))) = 1.17126595077854157753032365...

%p with(numtheory): cfrac(cosh(gamma),100,'quotients'); # _Muniru A Asiru_, Dec 20 2018

%t ContinuedFraction[ (Exp[EulerGamma] + Exp[ -EulerGamma])/2, 100]

%o (PARI) contfrac(cosh(Euler)) \\ _Michel Marcus_, Dec 21 2018

%Y Cf. A147708 (decimal expansion), A001620 (Euler-Mascheroni constant), A322603.

%K nonn,cofr

%O 0,2

%A _Tristan Cam_, Dec 20 2018

%E Offset changed by _Andrew Howroyd_, Jul 07 2024