Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Jan 22 2024 01:19:59
%S 1,2,2,2,2,4,2,3,2,4,2,4,2,4,4,3,2,4,2,4,4,4,2,6,2,4,3,4,2,8,2,4,4,4,
%T 4,4,2,4,4,6,2,8,2,4,4,4,2,6,2,4,4,4,2,6,4,6,4,4,2,8,2,4,4,4,4,8,2,4,
%U 4,8,2,6,2,4,4,4,4,8,2,6,3,4,2,8,4,4,4
%N The number of semi-unitary divisors of n.
%C The notion of semi-unitary divisor was introduced by Chidambaraswamy in 1967.
%C A semi-unitary divisor of n is defined as the largest divisor d of n such that the largest divisor of d that is a unitary divisor of n/d is 1. In terms of the relation defined in A322482, d is the largest divisor of n such that T(d, n/d) = 1 (the largest divisor d that is semiprime to n/d).
%C The number of divisors of n that are exponentially odd numbers (A268335). - _Amiram Eldar_, Sep 08 2023
%D J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc., Vol. 31 (1967), pp. 117-126.
%H Amiram Eldar, <a href="/A322483/b322483.txt">Table of n, a(n) for n = 1..10000</a>
%H Krishnaswami Alladi, <a href="https://doi.org/10.1017/S1446788700017304">On arithmetic functions and divisors of higher order</a>, Journal of the Australian Mathematical Society, Vol. 23, No. 1 (1977), pp. 9-27.
%H Pentti Haukkanen, <a href="https://www.researchgate.net/profile/Pentti_Haukkanen/publication/266363785_Basic_properties_of_the_bi-unitary_convolution_and_the_semi-unitary_convolution/links/5469efe50cf2397f782f4e3b/Basic-properties-of-the-bi-unitary-convolution-and-the-semi-unitary-convolution.pdf">Basic properties of the bi-unitary convolution and the semi-unitary convolution</a>, Indian J. Math, Vol. 40 (1998), pp. 305-315.
%H Vaclav Kotesovec, <a href="/A322483/a322483.jpg">Graph - the asymptotic ratio (100000 terms)</a>.
%H D. Suryanarayana, <a href="https://doi.org/10.1007/BFb0058797">The number of bi-unitary divisors of an integer</a>, The theory of arithmetic functions. Springer, Berlin, Heidelberg, 1972, pp. 273-282.
%H D. Suryanarayana and V. Siva Rama Prasad, <a href="https://doi.org/10.1017/S1446788700012908">Sum functions of k-ary and semi-k-ary divisors</a>, Journal of the Australian Mathematical Society, Vol. 15, No. 2 (1973), pp. 148-162.
%H D. Suryanarayana and R. Sita Rama Chandra Rao, <a href="https://doi.org/10.1017/S1446788700016888">The number of unitarily k-free divisors of an integer</a>, Journal of the Australian Mathematical Society, Vol. 21, No. 1 (1976), pp. 19-35.
%H Laszlo Tóth, <a href="http://annalesm.elte.hu/annales41-1998/Annales_1998_T-XLI.pdf#page=167">Sum functions of certain generalized divisors</a>, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Vol. 41 (1998), pp. 165-180.
%F Multiplicative with a(p^e) = floor((e+3)/2).
%F a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
%F a(n) = Sum_{d|n} mu(d/gcd(d, n/d))^2. - _Ilya Gutkovskiy_, Feb 21 2020
%F a(n) = A000005(A019554(n)) (the number of divisors of the smallest number whose square is divisible by n). - _Amiram Eldar_, Sep 02 2023
%F From _Vaclav Kotesovec_, Sep 06 2023: (Start)
%F Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)).
%F Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s)).
%F Let f(s) = Product_{p prime} (1 - 2/p^(2*s) + 1/p^(3*s)).
%F Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 6 * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
%F f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444...,
%F f'(1) = f(1) * Sum_{p prime} (4*p-3) * log(p) / (p^3 - 2*p + 1) = 0.808661108949590913395... and gamma is the Euler-Mascheroni constant A001620. (End)
%e The semi-unitary divisors of 8 are 1, 2, 8 (4 is not semi-unitary divisor since the largest divisor of 4 that is a unitary divisor of 8/4 = 2 is 2 > 1), and their number is 3, thus a(8) = 3.
%t f[p_, e_] := Floor[(e+3)/2]; sud[n_] := If[n==1, 1, Times @@ (f @@@ FactorInteger[n])]; Array[sud, 100]
%o (PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = (f[k,2]+3)\2; f[k,2] = 1;); factorback(f);} \\ _Michel Marcus_, Dec 14 2018
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * 1/(1-X^2) * (1 + X - X^2))[n], ", ")) \\ _Vaclav Kotesovec_, Sep 06 2023
%Y Cf. A000005, A005117, A019554, A034444, A268335, A286324, A322482.
%Y Cf. A001620, A056671, A343443, A365488, A365491.
%K nonn,easy,mult
%O 1,2
%A _Amiram Eldar_, Dec 11 2018