login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of n-th powers of the roots of x^3 + 8*x^2 + 5*x - 1.
1

%I #32 Jan 13 2019 07:46:33

%S 3,-8,54,-389,2834,-20673,150825,-1100401,8028410,-58574450,427353149,

%T -3117924532,22748056061,-165967472679,1210881576595,-8834467193304,

%U 64455362190778,-470259679983109,3430966161717678,-25031975531635101,182630713764509309

%N Sum of n-th powers of the roots of x^3 + 8*x^2 + 5*x - 1.

%C Let A = cos(2*Pi/7), B = cos(4*Pi/7), C = cos(8*Pi/7).

%C For integers h, k let

%C X = 2*sqrt(7)*A^(h+k+1)/(B^h*C^k),

%C Y = 2*sqrt(7)*B^(h+k+1)/(C^h*A^k),

%C Z = 2*sqrt(7)*C^(h+k+1)/(A^h*B^k).

%C then X, Y, Z are the roots of a monic equation

%C t^3 + a*t^2 + b*t + c = 0

%C where a, b, c are integers and c = 1 or -1.

%C Then X^n + Y^n + Z^n, n = 0, 1, 2, ... is an integer sequence.

%C This sequence has (h,k) = (0,1).

%H Colin Barker, <a href="/A322461/b322461.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-8,-5,1).

%F a(n) = (2*sqrt(7)*A^2/C)^n + (2*sqrt(7)*B^2/A)^n + (2*sqrt(7)*C^2/B)^n, where A = cos(2*Pi/7), B = cos(4*Pi/7), C = cos(8*Pi/7).

%F a(n) = -8*a(n-2) - 5*a(n-2) + a(n-3) for n > 2.

%F G.f.: (3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3). - _Colin Barker_, Dec 09 2018

%t LinearRecurrence[{-8, -5, 1}, {3, -8, 54}, 50] (* _Amiram Eldar_, Dec 09 2018 *)

%o (PARI) Vec((3 + x)*(1 + 5*x) / (1 + 8*x + 5*x^2 - x^3) + O(x^25)) \\ _Colin Barker_, Dec 09 2018

%o (PARI) polsym(x^3 + 8*x^2 + 5*x - 1, 25) \\ _Joerg Arndt_, Dec 17 2018

%Y Similar sequences with (h,k) values: A094648 (0,0), A274075 (1,0).

%K sign,easy

%O 0,1

%A _Kai Wang_, Dec 09 2018