OFFSET
1,1
COMMENTS
A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..566 from Robert Price)
MATHEMATICA
b = 8; d = {};
p = Select[Range[2, 10000], PrimeQ[#] &];
For[i = 1, i <= Length[p], i++,
c = IntegerDigits[p[[i]], b];
If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]];
For[j = 1, j <= Length[c], j++,
t = Delete[c, j];
If[t[[1]] == 0, Continue[]];
If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]];
d (* Robert Price, Dec 08 2018 *)
PROG
(Python)
from sympy import isprime
def ok(n):
if not isprime(n): return False
if n < 8: return True
o = oct(n)[2:]
oi = (o[:i]+o[i+1:] for i in range(len(o)))
return any(t[0] != '0' and ok(int(t, 8)) for t in oi)
print([k for k in range(492) if ok(k)]) # Michael S. Branicky, Jan 13 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Robert Price, Dec 08 2018
STATUS
approved