%I #8 Dec 06 2018 16:35:55
%S 1,0,1,1,1,0,2,1,0,0,3,1,1,0,0,6,1,0,0,0,0,7,1,2,1,0,0,0,14,1,0,0,0,0,
%T 0,0,17,1,2,1,1,0,0,0,0,27,1,1,1,0,0,0,0,0,0,34,1,3,2,1,1,0,0,0,0,0,
%U 54,2,0,0,0,0,0,0,0,0,0,0,63,1,4,4,3,1,1
%N Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.
%C The edge connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/K-edge-connected_graph">k-edge-connected graph</a>
%e Triangle begins:
%e 1
%e 0 1
%e 1 1 0
%e 2 1 0 0
%e 3 1 1 0 0
%e 6 1 0 0 0 0
%e 7 1 2 1 0 0 0
%e 14 1 0 0 0 0 0 0
%e 17 1 2 1 1 0 0 0 0
%e 27 1 1 1 0 0 0 0 0 0
%e 34 1 3 2 1 1 0 0 0 0 0
%e 54 2 0 0 0 0 0 0 0 0 0 0
%e 63 1 4 4 3 1 1 0 0 0 0 0 0
%e Row 6 {7, 1, 2, 1} counts the following integer partitions:
%e (51) (6) (33) (222)
%e (321) (42)
%e (411)
%e (2211)
%e (3111)
%e (21111)
%e (111111)
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]
%t Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]
%Y Row sums are A000041. First column is A322367. Second column is A322391.
%Y Cf. A013922, A054921, A095983, A304716, A305078, A305079, A322335, A322336, A322337, A322338, A322387.
%K nonn,tabl
%O 0,7
%A _Gus Wiseman_, Dec 06 2018