Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 20 2020 09:00:39
%S 0,0,0,0,0,1,0,1,1,3,1,6,2,10,8,13,9,26,14,35,28,50,37,77,54,101,84,
%T 138,110,205,149,252,222,335,287,455,375,577,522,740,657,985
%N Number of 2-vertex-connected integer partitions of n.
%C An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/K-vertex-connected_graph">k-vertex-connected graph</a>
%e The a(14) = 10 2-vertex-connected integer partitions:
%e (14) (8,6) (6,4,4) (6,3,3,2) (6,2,2,2,2)
%e (10,4) (6,6,2) (6,4,2,2)
%e (12,2) (10,2,2)
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
%t Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]
%Y Cf. A013922, A095983, A218970, A275307, A304714, A304716, A305078, A305079, A322335, A322336, A322337, A322338, A322388, A322389, A322390.
%K nonn,more
%O 1,10
%A _Gus Wiseman_, Dec 05 2018
%E a(41)-a(42) from _Jinyuan Wang_, Jun 20 2020